136 research outputs found

    Detecting, assessing, and mitigating the effects of naval sonar on cetaceans

    Get PDF
    Effective management of the potential environmental impacts of naval sonar requires quantitative data on the behaviour and hearing physiology of cetaceans. Here, novel experimental and analytical methods were used to obtain such information and to test the effectiveness of an operational mitigation method for naval sonar. A Bayesian method was developed to estimate whale locations through time, integrating visual observations with measurements from on-animal inertial, acoustic, depth, and Fastloc-GPS sensors. The track reconstruction method was applied to 13 humpback whale (Megaptera novaeangliae) data sets collected during a multi-disciplinary behavioural response study in Norwegian waters. Thirty-one controlled exposure experiments with and without active transmissions of 1.3-2 kHz sounds were conducted using a moving vessel that towed a sonar source. Dose-response functions, representing the relationships between measured sonar dose and behavioural responses identified from the reconstructed tracks, predicted that 50% of the humpbacks would initiate avoidance at a relatively high received sound pressure level of 166 dB re 1 µPa. Very similar dose-response functions were obtained for cessation of feeding. In a laboratory study, behavioural reaction times of a harbour porpoise (Phocoena phocoena) to sonar-like sounds were measured using operant conditioning and a psychoacoustic method. Auditory weighting functions, which can be used to improve dose-response functions, were obtained for the porpoise based on the assumption that sounds of equal loudness elicit equal reaction time. Additional analyses of the humpback whale data set provided evidence that ramp-up of naval sonar mitigates harmful sound levels in responsive cetaceans located directly in the path of the source, and suggested that a subset of the humpback whale population, such as mother-calf pairs, and more responsive species would benefit from the use of sonar ramp-up. The findings in this thesis are intended to inform sound exposure criteria and mitigation guidelines for anthropogenic noise exposure to cetaceans

    A path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales

    Get PDF
    PW received a PhD studentship with matched funding from The Netherlands Ministry of Defence (administered by TNO) and the UK Natural Environment Research Council (NE/J500276/1). The 3S2 project was funded by the US Office of Naval Research (N00014-10-1-0355), the Norwegian Ministry of Defence, and The Netherlands Ministry of Defence. Part of this work was supported by the Multi-study Ocean acoustics Human effects Analysis (MOCHA) project funded by the US Office of Naval Research (N00014-12-1-0204).BACKGROUND: Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed information, but without additional positional data this method results in uncertainty that grows with time. Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time under water. We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error measurements made during calibrations. RESULTS: High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied most by distance to the whale. CONCLUSIONS: By systematically accounting for the observation errors in the position fixes, our model provides a quantitative estimate of location uncertainty that can be appropriately incorporated into analyses of animal movement. This generic method has potential application for a wide range of marine animal species and data recording systems.Publisher PDFPeer reviewe

    Call combination patterns in Icelandic killer whales (Orcinus orca)

    Get PDF
    Funding: Funding for data collection was provided by the Fundação para a Ciência e a Tecnologia (grant number SFRH/BD/30303/2006), the Icelandic Research Fund (grant numbers 120248042 and 217519), the National Geographic Global Exploration Fund (grant number GEFNE65-12), and a Russell Trust Award from the University of St. Andrews to FIPS. This project was funded in part by the generous support of Earthwatch. Additionally, funding was provided by the US Office of Naval Research (grant number N00014-08-1-0984), US Living Marine Resources (project 57), UK Defence Science and Technology Laboratory, and French Direction Générale de l’Armement to PJOM. A RANNÍS Infrastructure Fund (grant number 200229) provided funding to JS and PJW for CATS tags and tracking equipment. AS was supported by Doctoral Student Grants (grant number 206808 and 239641) from the Icelandic Research Fund.Acoustic sequences have been described in a range of species and in varying complexity. Cetaceans are known to produce complex song displays but these are generally limited to mysticetes; little is known about call combinations in odontocetes. Here we investigate call combinations produced by killer whales (Orcinus orca), a highly social and vocal species. Using acoustic recordings from 22 multisensor tags, we use a first order Markov model to show that transitions between call types or subtypes were significantly different from random, with repetitions and specific call combinations occurring more often than expected by chance. The mixed call combinations were composed of two or three calls and were part of three call combination clusters. Call combinations were recorded over several years, from different individuals, and several social clusters. The most common call combination cluster consisted of six call (sub-)types. Although different combinations were generated, there were clear rules regarding which were the first and last call types produced, and combinations were highly stereotyped. Two of the three call combination clusters were produced outside of feeding contexts, but their function remains unclear and further research is required to determine possible functions and whether these combinations could be behaviour- or group-specific.Publisher PDFPeer reviewe

    Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals

    Get PDF
    A.M.v.B.B. and P.B. were funded by The Netherlands Ministry of Defence. Fieldwork efforts and support for P.M. and F.S. was provided by the US Office of Naval Research [award numbers N00014-08-1-0984 and N00014-10-1-0355]. P.W. received a PhD studentship with matched funding from The Netherlands Ministry of Defence (administered by The Netherlands Organisation for Applied Scientific Research, TNO) and UK Natural Environment Research Council [NE/J500276/1].Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species.Publisher PDFPeer reviewe

    Predictive model of sperm whale prey capture attempts from time-depth data

    Get PDF
    Funding: Research was supported by the Portuguese Science & Technology Foundation (FCT), the Azorean Science & Technology Fund (FRCT), and the EU through research projects WATCH IT-Acores-01-0145-FEDER-000057, FCT-IF/00943/2013/CP1199/CT0001, META-FA_06_2017_017, and SUMMER-H2020 GA 817806, co-funded by FEDER, COMPETE, QREN, POPH, ESF, PO AZORES 2020, Portuguese Ministry for Science and Education, and individual contracts/grants to CO (WATCH IT-Acores-01-0145-FEDER-000057, 3/SRMCT/DRAM/2019 under RAGES-SUB/ENV.C.2-GA 110661, and INTERTAGUA-MAC2/1.1a/385), SPJ (SUMMER-H2020 GA 817806), IC (FCT-IP Project UIDP/05634/2020). PJW is funded by RANNÍS Icelandic Research Fund grant 207081. RP and MAS are co-financed by AZORES2020, through the EU Fund 01-0145-FEDER-000140 “MarAZ Researchers: Consolidate a body of researchers in Marine Sciences in the Azores”. Okeanos is funded by FCT (UIDB/05634/2020) and by the Regional Government of the Azores through the initiative to support the Research Centers of the University of the Azores (M1.1.A/REEQ.CIENTÍFICO UI&D/2021/010).Background High-resolution sound and movement recording tags offer unprecedented insights into the fine-scale foraging behaviour of cetaceans, especially echolocating odontocetes, enabling the estimation of a series of foraging metrics. However, these tags are expensive, making them inaccessible to most researchers. Time-Depth Recorders (TDRs), which have been widely used to study diving and foraging behaviour of marine mammals, offer a more affordable alternative. Unfortunately, data collected by TDRs are bi-dimensional (time and depth only), so quantifying foraging effort from those data is challenging. Methods A predictive model of the foraging effort of sperm whales (Physeter macrocephalus) was developed to identify prey capture attempts (PCAs) from time-depth data. Data from high-resolution acoustic and movement recording tags deployed on 12 sperm whales were downsampled to 1 Hz to match the typical TDR sampling resolution and used to predict the number of buzzes (i.e., rapid series of echolocation clicks indicative of PCAs). Generalized linear mixed models were built for dive segments of different durations (30, 60, 180 and 300 s) using multiple dive metrics as potential predictors of PCAs. Results Average depth, variance of depth and variance of vertical velocity were the best predictors of the number of buzzes. Sensitivity analysis showed that models with segments of 180 s had the best overall predictive performance, with a good area under the curve value (0.78 ± 0.05), high sensitivity (0.93 ± 0.06) and high specificity (0.64 ± 0.14). Models using 180 s segments had a small difference between observed and predicted number of buzzes per dive, with a median of 4 buzzes, representing a difference in predicted buzzes of 30%. Conclusions These results demonstrate that it is possible to obtain a fine-scale, accurate index of sperm whale PCAs from time-depth data alone. This work helps leveraging the potential of time-depth data for studying the foraging ecology of sperm whales and the possibility of applying this approach to a wide range of echolocating cetaceans. The development of accurate foraging indices from low-cost, easily accessible TDR data would contribute to democratize this type of research, promote long-term studies of various species in several locations, and enable analyses of historical datasets to investigate changes in cetacean foraging activity.Publisher PDFPeer reviewe

    Biological significance of sperm whale responses to sonar: comparison with anti-predator responses

    Get PDF
    Research funding was provided by the US Office of Naval Research and the Ministries of Defence of Norway, the Netherlands and France as well as the UK Natural Environmental Research Council.A key issue when investigating effects of anthropogenic noise on cetacean behavior is to identify the biological significance of the responses. Predator presence can be considered a natural high-level disturbance stimulus to which prey animals have evolved adaptive response strategies to reduce their risk of predation by altering behavior away from fitness-enhancing activities such as foraging. By contrasting the type and magnitude (duration, severity, consistency) of behavioral responses to anthropogenic noise and playback of killer whale (KW) sounds that simulated predator presence, this study aimed to provide a relative index of the disturbance level as an indication of the biological significance of responses to the anthropogenic stimulus. Using multi-sensor tags as well as visual observations of surface behavior of adult male sperm whales, we assessed a comprehensive range of behavioral metrics that could reduce individuals’ fitness if altered for a biologically relevant duration. Combining previously published results and new analyses, we showed that the responses to 1-2 kHz upsweep naval sonar and to KW playback were very similar, including horizontal avoidance, interruption of foraging or resting activities and an increase in social sound production. However, only KW playbacks elicited grouping behaviors, indicating that this social response component was specific to predator detection. Animals responded to a lesser extent to 6-7 kHz upsweep naval sonar, indicating weaker disturbance effects. Our study demonstrates the benefit of using anti-predator responses as a reference of disturbance when evaluating the relative impacts of anthropogenic stimuli, which can be of particular interest in studies of threatened species such as sperm whales.Publisher PDFPeer reviewe

    Evidence for discrimination between feeding sounds of familiar fish and unfamiliar mammal-eating killer whale ecotypes by long-finned pilot whales

    Get PDF
    Research funding was provided by the US Office of Naval Research, the DGA/TN (France), the UK Natural Environmental Research Council, and the Ministries of Defence of Norway and The Netherlands. PLT acknowledges funding received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions. CC acknowledges statistical support provided by the Multi-study OCean acoustics Human effects Analysis (MOCHA) project funded by the United States Office of Naval Research (Grant N00014-12-1-0204).Killer whales (KW) may be predators or competitors of other cetaceans. Since their foraging behavior and acoustics differ among populations ('ecotypes'), we hypothesized that other cetaceans can eavesdrop on KW sounds and adjust their behavior according to the KW ecotype. We performed playback experiments on long-finned pilot whales (Globicephala melas) in Norway using familiar fish-eating KW sounds (fKW) simulating a sympatric population that might compete for foraging areas, unfamiliar mammal-eating KW sounds (mKW) simulating a potential predator threat, and two control sounds. We assessed behavioral responses using animal-borne multi-sensor tags and surface visual observations. Pilot whales barely changed behavior to a broadband noise (CTRL-), whereas they were attracted and exhibited spyhops to fKW, mKW, and to a repeated-tonal upsweep signal (CTRL+). Whales never stopped nor started feeding in response to fKW, whereas they reduced or stopped foraging to mKW and CTRL+. Moreover, pilot whales joined other subgroups in response to fKW and CTRL+, whereas they tightened individual spacing within group and reduced time at surface in response to mKW. Typical active intimidation behavior displayed to fKW might be an antipredator strategy to a known low-risk ecotype or alternatively a way of securing the habitat exploited by a heterospecific sympatric population. Cessation of feeding and more cohesive approach to mKW playbacks might reflect an antipredator behavior towards an unknown KW ecotype of potentially higher risk. We conclude that pilot whales are able to acoustically discriminate between familiar and unfamiliar KW ecotypes, enabling them to adjust their behavior according to the perceived disturbance type.PostprintPeer reviewe

    First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise

    Get PDF
    -Although northern bottlenose whales were the most heavily hunted beaked whale, we have little information about this species in its remote habitat of the North Atlantic Ocean. Underwater anthropogenic noise and disruption of their natural habitat may be major threats, given the sensitivity of other beaked whales to such noise disturbance. We attached dataloggers to 13 northern bottlenose whales and compared their natural sounds and movements to those of one individual exposed to escalating levels of 1–2 kHz upsweep naval sonar signals. At a received sound pressure level (SPL) of 98 dB re 1 μPa, the whale turned to approach the sound source, but at a received SPL of 107 dB re 1 μPa, the whale began moving in an unusually straight course and then made a near 180° turn away from the source, and performed the longest and deepest dive (94 min, 2339 m) recorded for this species. Animal movement parameters differed significantly from baseline for more than 7 h until the tag fell off 33–36 km away. No clicks were emitted during the response period, indicating cessation of normal echolocation-based foraging. A sharp decline in both acoustic and visual detections of conspecifics after exposure suggests other whales in the area responded similarly. Though more data are needed, our results indicate high sensitivity of this species to acoustic disturbance, with consequent risk from marine industrialization and naval activity

    De verdeelde samenleving

    Get PDF
    Tijdens het voorlopige hoogtepunt van de corona-uitbraak, in april, bleek dat een groot deel van de Nederlandse bevolking angstig en onzeker was. Bij de heropening van de samenleving begin juli was de angst en onzekerheid afgenomen, maar dat heeft zich niet doorgezet. Dit blijkt uit de bevindingen van het vervolgonderzoek De verdeelde samenleving. Er is weer sprake van een toename van angst- en stressgevoelens en een verdere afname in het vertrouwen in de overheid, het RIVM en de GGD. Jongeren en mensen met kwetsbare maatschappelijke posities, zoals een laag inkomen, een lage opleiding, geringe werkzekerheid, en een beperkt ondersteunend netwerk, hebben relatief meer onvrede over het overheidsbeleid dan groepen met een sterkere maatschappelijke positie en een sterker ondersteunend netwerk

    Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals

    Get PDF
    The research described in this paper was supported by US Office of Naval Research (ONR grants N00014-15-1-2533 and N00014-16-1-3059), US Strategic Environmental Research and Development Program (SERDP award RC-2337), the French Ministry of Defence (DGA) and the Netherlands Ministry of Defence. P.L.T. acknowledges support from the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland; supported by the Scottish Funding Council, grant reference HR09011, and contributing institutions). All relevant data and scripts are within the paper and its electronic supplementary material, or available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.fc5c0s4Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments (n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway. Animals were tagged with high-resolution archival tags (n = 1 per experiment) or medium-resolution satellite tags (n = 9 in total) and subsequently exposed to sonar. We also deployed bottom-moored recorders to acoustically monitor for whales in the exposed area. Tagged whales initiated avoidance of the sound source over a wide range of distances (0.8–28 km), with responses characteristic of beaked whales. Both onset and intensity of response were better predicted by received sound pressure level (SPL) than by source distance. Avoidance threshold SPLs estimated for each whale ranged from 117–126 dB re 1 µPa, comparable to those of other tagged beaked whales. In this pristine underwater acoustic environment, we found no indication that the source distances tested in our experiments modulated the behavioural effects of sonar, as has been suggested for locations where whales are frequently exposed to sonar.Publisher PDFPeer reviewe
    • …
    corecore